

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2019
Lab 06 – Lists

Assignment: Lab 06 – Lists
Due Date: Thursday, March 7th by 11:59:59 PM
Value: 10 points

This week’s lab will put into practice the concepts you learned about lists:
indexing, mutating, and traversing. It will also make use of while loops, both

to get input from the user, and to traverse the contents of the list.

(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention as your TA explains.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – Sentinel While Loops

One way to use a while loop is as a sentinel loop. A sentinel loop continues

to process data until reaching a special value that signals the end of the data.
The special value is called the sentinel.

Here is the pseudocode for a sentinel loop in Python:

Get the first data item from the user

While data item is not the sentinel

 Process the data item

 Get the next data item from the user

One of the scenarios in which we can implement this type of loop is a version
of our grocery list program that allows us to enter as many items as we like.
Although it is similar to previous versions, the interactive (sentinel) while loop
of the grocery list program allows us to enter as many items as we like until the
sentinel value of "exit" is entered.

SENTINEL = "exit"

def main():

 # initialize the list to be empty

 grocery_list = []
 # get the initial user value

 msg = "Enter an item, or '" + SENTINEL + "' to end: "

 userVal = input(msg)

 # run the while loop until the user enters "exit"

 while userVal != SENTINEL:

 grocery_list.append(userVal)

 # get another value from the user

 userVal = input(msg)

 print("Remember to buy", grocery_list)

main()

CMSC 201 – Computer Science I for Majors Page 3

Part 1B: Review – Lists and Indexing

Lists are an easy way to hold lots of individual pieces of data without needing
to make lots of variables. They are a type of data structure, which are
specialized ways of organizing and storing data.

In order to get a specific variable, or element, from a list, we need to access
that index of the list. NOTE: Lists don’t starting counting from 1 – the first
element in the list is at index 0.

For example, the following line of code creates a list called names:

names = ["Aya", "Brad", "Carlos", "David", "Emma"]

Which creates the list (called names) below:

Aya Brad Carlos David Emma

0 1 2 3 4

CMSC 201 – Computer Science I for Majors Page 4

Part 1C: Review – Traversing Lists

Looking at the contents of a list is also known as traversing the list, and can
be done using a basic while loop. In the loop, we use a variable to keep

track of which item in the list we are looking at by having it store the index of
that item. As we move on to the next item, that variable is incremented, until
we reach the end of the list.

The length of the list is an important property, as it is used to tell the while

loop when to stop traversing the list. The length can be gotten by using the
len() function.

For example, this code would traverse the names list above, printing out that

each person is awesome:

this variable can be called anything

it starts at zero because that's the first index

index = 0

while index < len(names):

 print(names[index], "is awesome!")

 index += 1

CMSC 201 – Computer Science I for Majors Page 5

Part 1D: Review – Mutating Lists

Lists can also be “mutated” – we can add and remove items from them as
many times as we want. This means that we can start off with an empty list
(denoted as two square brackets: newList = []) and fill it as necessary.

Adding to a list is easy to do: simply add the new item to the end of the list,
using the .append() function. The following line of code adds a few items

to a list called newList:
newList.append("A Thing")

newList.append(1.37)

newList.append(0)

newList.append(False)

After we run these lines of code, our list would look like this:

"A Thing" 1.37 0 False

0 1 2 3

To remove items from the list, we use the appropriately named .remove()

function. The .remove() function takes in what we want to remove, not

where it is in the list. For example, if we call it and ask it to remove 0, it will
remove the third element, the integer 0, and not the string "A Thing", which is
stored at index 0.

newList.remove(0)

"A Thing" 1.37 False

0 1 2

The .remove() function also updates the indexes of anything after the

removed element, so that our list looks like a regular list after the element was
deleted. (In other words, notice how the index at which False is stored

changes from 3 before the removal to 2 afterwards.)

CMSC 201 – Computer Science I for Majors Page 6

Part 2: Exercise

In this lab, you’ll be creating one file, games.py, but you’ll be creating it in

four steps. That way, you can focus on each of the steps needed one by one.

The program you’ll be coding will display different options for games, and will
allow users to vote on their favorite, using the numbers printed next to each
one. Once voting is over, your program will print out each game and how
many votes it earned.

Tasks

 Create a games.py file

 Write the code to print out the game choices
 Write the code to get votes from the user
 Write the code to “save” the votes in a list
 Write the code to print out the total votes

 (You should run and test your games.py file after each step)

 Submit completed games.py file

CMSC 201 – Computer Science I for Majors Page 7

Part 3A: Creating Your File

First, create the lab05 folder using the mkdir command -- the folder needs

to be inside your Labs folder as well. (If you need a reminder of how to

create and navigate folders, try asking a classmate next to you for help. If
you’re both stuck, ask the TA or refer to the instructions for Lab 1.)

Next, create a Python file called games.py using the “touch” command in

GL.
The “touch” command creates a new blank file, but doesn’t open it.

Once a file has been “touched”, you can open and edit it using emacs.
 touch games.py

 emacs games.py

The first thing you should do with any new Python file is create and fill out the
comment header block at the top of your file. Here is a template:

File: FILENAME.py

Author: YOUR NAME

Date: TODAY'S DATE

Section: YOUR SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

CMSC 201 – Computer Science I for Majors Page 8

Part 3B: Printing the Game Choices

This is the first of four steps that must be written for this lab.
The first step is to copy in the list of games, and to write code that will print out
the different choices.

Copy the list below into your program’s main():
list of games to vote on

games = ["Twister", "Dodgeball", "Capture the Flag", "Hide

and Seek", "Croquet", "Ring Toss", "Ping Pong"]

To print the choices, you should write a while loop that will print out the

following two things on each line:

 The number of the choice (with the count starting at 1, not 0!)

 The game’s name

Here is some sample output for this part of the program.
(Yours should match this word for word.)

linux1[5]% python games.py

1 - Twister

2 - Dodgeball

3 - Capture the Flag

4 - Hide and Seek

5 - Croquet

6 - Ring Toss

7 - Ping Pong

Once this part of the program works correctly, move on to the next step.

Having trouble making the numbering start at 1 instead of 0?
Remember that the index of a list begins counting at 0. If you are printing the
current index as the number, your printing will start at 0. In order to start
counting at 1, you will need to print something like index + 1.

CMSC 201 – Computer Science I for Majors Page 9

Part 3C: Voting for a Game

This is the second of four steps that must be written for this lab.
Now that the code to display the games is complete, we need to allow the user
and their friends to actually vote!

For now, we won’t worry about storing the votes. Just write the code that will
allow the user to vote, and that will stop when they enter a “0” to quit. If they
make an invalid choice, simply ignore it and ask again.

Here is some sample output, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

linux1[6]% python games.py

1 - Twister

2 - Dodgeball

3 - Capture the Flag

4 - Hide and Seek

5 - Croquet

6 - Ring Toss

7 - Ping Pong

What is your favorite game? (Enter 0 to stop): 1

What is your favorite game? (Enter 0 to stop): 1

What is your favorite game? (Enter 0 to stop): 4

What is your favorite game? (Enter 0 to stop): 4

What is your favorite game? (Enter 0 to stop): 9

What is your favorite game? (Enter 0 to stop): 7

What is your favorite game? (Enter 0 to stop): 0

Once this part of the program works correctly, move on to the next step.

Are you stuck on how to interact with the user?
Take a look at the example on page 2 of a sentinel loop (an interactive while

loop with a clear stop condition). You should use the same basic code setup to
allow the user to keep voting until they choose to quit by entering “0”.

CMSC 201 – Computer Science I for Majors Page 10

Part 3D: Storing Votes
This is the third of four steps that must be written for this lab.
Now that you can accept votes, we need to store them. We’ll store the votes
for the games in another, separate list of integers.

For example, if the user voted for Twister once (choice 1), Ping Pong twice
(choice 7) and Capture the Flag four times (choice 3), the vote list would look
like:

votes = 1 0 4 0 0 0 2

index 0 index 1 index 2 index 3 index 4 index 5 index 6

In other words, the votes stored at a given index in votes should be for the

game stored at that same index in the games list.

Remember, list indexing starts at 0, but we’re presenting the choices to the
user starting at 1, so the way you store votes will need to compensate for this
offset. You’ll also need to make sure you ignore invalid input – don’t try to
count a vote for option #8, when there are only 7 choices!

At the end, print out the list of votes, so you can ensure your program is
working correctly. (Simply use print("votes:", votes) in your code.)

Here is some sample output, with the user input in blue.

We’ve removed the list of games at the beginning to save space,
but it should still be present in your output.

(Yours does not have to match this word for word, but it should be similar.)

linux1[5]% python games.py

[[games should be displayed here]]

What is your favorite game? (Enter 0 to stop): 2

What is your favorite game? (Enter 0 to stop): 7

What is your favorite game? (Enter 0 to stop): 7

What is your favorite game? (Enter 0 to stop): 5

What is your favorite game? (Enter 0 to stop): 0

[0, 1, 0, 0, 1, 0, 2]

(If you need some help, hints are available after this sample output.)
Once this part of the program works correctly, move on to the next step.

CMSC 201 – Computer Science I for Majors Page 11

Stuck on how to store the user’s votes?
You need a list of the same length as the number of games. It should be a list
of integers, and since this is something we’re using to count, they should all be
initialized to zero.

Still stuck on how to store the user’s votes?
Try creating a votes variable that contains exactly as many zeroes as the
number of games. Something like this would work:

votes = [0, 0, 0, 0, 0, 0, 0]

Is your program counting the user’s vote for the wrong games?
Remember, the user’s numbering starts at 1, but the indexing in a list starts at
0. If a user chooses to vote for game #3, the votes for that game are stored at
votes[2], not votes[3].

Having trouble seeing the “big picture” of how your program should work?
Try drawing a quick flowchart or planning out what needs to happen on paper
in pseudocode. Don’t worry about the specific details, just try to visualize what
needs to happen overall. How do you stop once the user wants to quit? When
do you need to ignore a user’s vote? How are the votes stored? When do
variables need to be initialized?

CMSC 201 – Computer Science I for Majors Page 12

Part 3E: Printing Out the Results

This is the last of four steps that must be written for this lab.
This last step is relatively simple, as you’ve already done all of the hard work.
For this step, we’ll display the final votes for each game. (If your code that
asks for and stores votes doesn’t work correctly, you might also have to do
some debugging. That’s how programming works, sometimes!)

Once the user has entered “0” in order to stop voting, you need to go through
the list and print out the number of votes each game earned. You will need to
iterate through both of the lists, in the same while loop, in order to print out
each game and the number of votes it received.

Also, remove the line of code that prints out the list of votes from the last step!

IMPORTANT NOTE: You do not need to worry about figuring out which game
won. Although this would be great practice to try out!

Here is some sample output, with the user input in blue.
We’ve removed the list of game at the beginning to save space.
(Yours does not have to match this word for word, but it should be similar.)

linux1[5]% python games.py

[[games should be displayed here]]

What is your favorite game? (Enter 0 to stop): 2

What is your favorite game? (Enter 0 to stop): 7

What is your favorite game? (Enter 0 to stop): 2

What is your favorite game? (Enter 0 to stop): 5

What is your favorite game? (Enter 0 to stop): 4

What is your favorite game? (Enter 0 to stop): 18

What is your favorite game? (Enter 0 to stop): 0

Twister has 0 votes

Dodgeball has 2 votes

Capture the Flag has 0 votes

Hide and Seek has 1 votes

Croquet has 1 votes

Ring Toss has 0 votes

Ping Pong has 1 votes

(If you need some help, hints are available after this sample output.)

CMSC 201 – Computer Science I for Majors Page 13

Are you stuck on how to print elements from two lists at the same time?
Because we want to print two lists at once, we must use the same while loop to
access their contents. Remember that both lists are the same length, and the
indexes of games and votes match between the two lists.

Still stuck on how to print two lists at once?
You will want to use a loop similar to the one at the bottom of page 3. (The two
lists in your program should be the same length, so it doesn’t matter which one
you use for the length.)

CMSC 201 – Computer Science I for Majors Page 14

Part 4: Completing Your Lab

To test your program, make sure you’ve enabled Python 3, then run the
games.py file. Try a few different inputs to check that your program works.

Submitting

Since this lab is not an in-person lab, you will need to use the submit command
to turn your completed lab in.

Once your games.py file is complete, it is time to turn it in with the submit

command, where the class is cs201, and the assignment is LAB6. Type in (all

on one line) submit cs201 LAB6 games.py and press enter.

linux1[4]% submit cs201 LAB6 games.py

Submitting games.py...OK

linux1[5]% █

If you don’t get a confirmation like the one above, check that you have not
made any typos or errors in the command.

You can check that your lab assignment was submitted by following the
directions in Homework 0. Double-check that you submitted your lab
assignment correctly, since an empty file will result in a grade of zero for
this assignment.

